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Conditioning medicine for ischemic and hemorrhagic stroke
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Remote ischemic conditioning (RIC) is a promising safe, feasible, and inexpensive treatment for acute stroke, both ischemic 
and hemorrhagic. It is applied with a blood pressure cuff on the limbs and is ideal for the prehospital setting. RIC is a form 
of preconditioning with similarities to physical exercise. Its mechanisms of action are multiple and include improvement of 
collateral cerebral blood flow (CBF) and RIC acts as a “collateral therapeutic”. The increased CBF is likely related to nitric oxide 
synthase 3 in the endothelium and more importantly in circulating blood cells like the red blood cell. The RESIST clinical trial 
is a 1500 subject multicenter, randomized, sham-controlled trial of RIC in the prehospital setting in Denmark and should 
address the questions of whether RIC is safe and effective in acute stroke and whether the effect is mediated by an effect on 
nitric oxide/nitrite metabolism.
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Thrombolysis and endovascular thrombectomy (ET) remain 
the only two Food and Drug Administration (FDA)-approved 
treatments for acute ischemic stroke (Goyal et al., 2016). 
Despite the efficacy of ET, 50% of stroke patients remain 
disabled three months after therapy (Goyal et al., 2016; 
Albers et al., 2018).  Despite extensive preclinical studies 
and many clinical trials, clinical translation has failed as no 
neuroprotective agents have been approved by the FDA for 
stroke. Targeting single cascades and molecular pathways have 
not met with success. Since presence of collaterals is a major 
predictor of outcome with ET, a new therapeutic avenue is 
development of “collateral therapeutics” (Leng et al., 2016;, 
Berkhemer et al., 2016). Adjunctive therapies to thrombolysis 
and ET are needed that provide “bridging neuroprotection” and 
improve collateral blood flow.
     A promis ing avenue in  acute  s t roke  therapy is 
“preconditioning”. Preconditioning harnesses endogenous 
protective pathways and induces a protective phenotype (Hess 
et al., 2015a). Physical exercise is a form of preconditioning. In 
the 1950s, J,N Morris (1953a; 1953b) showed that conductors 
in the London Transit Authority who climbed up and down 

steps and were physically active on the job had a much lower 
incidence of sudden cardiac death than the sedentary bus 
drivers.  This was one of the first demonstrations of the efficacy 
of physical exercise. Subsequent studies demonstrate there is no 
better protection against the occurrence and severity of stroke 
and cardiovascular events than physical exercise (Chave et al., 
1978; Krarup et al., 2007; 2008; Armstrong et al., 2015). 

Acute exercise preconditioning
 While physical exercise reduces the risk and severity of stroke, 
it was not clear whether a single bout of exercise lessens the 
severity of stroke and acutely preconditions the brain. We tested 
whether acute exercise “preconditioning” was neuroprotective 
in a rat thromboembolic stroke model.(Hafez et al., 2019). 
Thirty minutes of forced high-intensity interval (HHI) treadmill 
exercise reduced infarct size and improved functional outcomes 
when the interval between exercise and stroke was one hour. 
This effect remained, but was attenuated with an interval of 24 
hrs, but was lost when the interval was extended to 72 hrs. A 
pharmacological inhibitor of nitric oxide synthase 3 (NOS3), 
N5-(1-Iminoethyl)-L-ornithine, dihydrochloride (L-NIO) 
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blocked the protective effect of exercise.  

Remote ischemic conditioning
While physical exercise should be encouraged to prevent stroke 
and myocardial infarction, physical exercise is not clinically 
practical as an acute stroke therapy as it cannot be implemented 
hyperacutely during stroke. Remote ischemic conditioning 
(RIC), the repeated inflation and deflation of a blood pressure 
cuff on the limbs, is a form of preconditioning that is highly 
translatable. RIC is based on the principle that a small sub-lethal 
dose protects against a later lethal dose (Hess et al., 2015a). 
RIC triggers adaptive, endogenous, protective responses in the 
brain, an “ischemia tolerant” state. A major advantage of RIC is 
that it has multiple mechanisms of action. Therapies targeted at 
one pathway or one injury cascade have failed in stroke.
     We and others have shown that RIC is effective in 
preclinical stroke models (Hess et al., 2013). We tested RIC 
in an autologous thromboembolic model in mice, with and 
without “late” intravenous tissue plasminogen activator (tPA) at 
4 hrs, and found RIC to be effective alone and in combination 
with tPA in both male and ovariectomized female mice 
(Hoda et al., 2012; 2014),. RIC improved cerebral blood flow 
(CBF) as measured by laser speckle contrast imaging.   An 
increase of CBF and enhancement of collateral flow is one of 
the mechanisms of action of RIC. Ma and colleagues (2017; 
2020) showed that RIC prevented collapse of pial collaterals 
and improved collateral blood flow to the penumbra and 
reduced brain infarct size in young and aged mice. A consistent 
finding in all our pre-clinical studies is that RIC increases 
CBF. We have tested RIC in mouse models of acute ischemic 
stroke (thromboembolic clot model), traumatic brain injury, 
intracranial hemorrhage, and bilateral carotid stenosis (BCAS), 
and in all these models, RIC increases CBF as measured by 
laser speckle contrast imaging (Hess et al., 2016).            
     In response to the failure of the clinical translation of so 
many neuroprotective agents that appeared promising in 
preclinical development, the National Institute of Neurological 
Diseases and Stroke (NINDS) funded the Stroke Preclinical 
Assessment Network (SPAN Network) (Anon, n.d.).  SPAN is 
a multicenter, randomized preclinical trial network modeled 
on randomized clinical trials. RIC is one of the six promising 
interventions/drugs being tested in the SPAN Network (https://
www.spannetwork.org).       

RIC and nitric oxide synthase 3 (NOS3)
The mechanisms of RIC are pleiotropic but include dependence 
upon NOS3 and nitrite. In cardiac models, RIC-induced 
cardioprotection is lost in NOS3 knockout mice (Rassaf et 
al., 2014). There are 3 isoforms of NOS: NOS1, NOS2, and 
NOS3. NOS3 is vasculo-protective in the brain while partial 
NOS3 deficiency is associated with microinfarcts (Katusic and 
Austin, 2014; 2016; Tan et al., 2015)., Moreover, inhibition of 
NOS3 with L-NIO is a commonly used experimental model for 
subcortical white matter stroke (Nunez et al., 2016).                   
     Although initially identified in endothelium, NOS3 is 
expressed in red blood cells (RBCs) (Kleinbongard et al., 
2006; Cortese-Krott and Kelm, 2014) and in most circulating 
blood cells including all main leukocyte subpopulations (Mühl 
and Pfeilschifter, 2003), platelets (Radomski et al., 1990), and 
circulating blood microparticles (Horn et al., 2013). NOS3 
from both endothelial and circulating blood cells contribute 
significantly to blood pressure and systemic nitrite levels, the 
latter being a major component of the circulating NO reservoir 
(Wood et al., 2013). RBC NOS3  (erythrocine (ery) NOS3) 
plays a key role in cardioprotection. Patients with coronary 
artery disease (CAD) have reduced eryNOS3 activity compared 
to healthy controls (Eligini et al., 2013). In a myocardial 
ischemia model, circulating blood cell NOS3 (presumably 

RBC) plays an important role in myocardial reperfusion injury 
as depleting bone marrow NOS3 in a chimera model increases 
the size of myocardial infarction and worsens left ventricular 
function (Merx et al., 2014). Since endothelium-resident NOS3 
(endNOS3) expression decreases with decreasing lumen size, 
vasodilation in microvessels is primarily regulated by eryNOS3 
activation and NO carried by RBCs (Cortese-Krott and Kelm, 
2014). A unique safety feature of RBC-mediated NO delivery is 
that it is dependent on a low oxygen-gradient, produces hypoxic 
vasodilation, and delivers NO to improve CBF in ischemic 
regions (Stamler et al., 1997). 
     RIC is an exercise mimetic and shares common mechanisms 
of action with exercise, namely dependence on NOS3 (Hess 
et al., 2015b). While the mechanisms of the beneficial effect 
of exercise are multiple, there is strong evidence for a role for 
NOS3.  Daily exercise for a month reduces cerebral infarct size 
in mice and the induced neuroprotection is dependent upon 
NOS3 (Endres et al., 2003).  We showed that NOS3 inhibition 
abrogates the neuroprotective effect of short term exercise in 
acute stroke (Hafez et al., 2019). Conventional wisdom has 
thought this to be dependent upon endothelial cell (EC) NOS3 
but blood cell and RBC NOS3 may play a larger role. RIC 
and exercise also affect RBC deformability. Exercise (HHI) 
improves RBC deformability in hypertensive subjects (Soltani 
et al., 2020). Grau (2016) showed that RIC increases RBC 
deformability and eryNOS3 in healthy humans.                        

RBC
Despite comprising 45- 50% of blood volume and over 80% 
of the total cells in the body the RBC has been largely ignored 
in stroke research (Sender et al., 2016). Each RBC circulates 
3000 to 4000 times/day.  RBCs are biconcave discs, 6-8 μm in 
diameter, and must pass through the smallest microvasculature 
(2-3 μm) under very high shear stress to deliver oxygen. To 
aid in passage through the microvasculature, healthy RBCs are 
highly deformable. This deformability can be measured and 
quantified by ektacytometry at the bedside. 
     CBF changes depend on two critical phenomena: 1) 
Vasodilation in major vessels by endothelial NOS3, which 
primarily maintains the “local” nitric oxide/nitrite (NO/NO2−) 
pool. However, the endothelial NOS3 is “uncoupled” during 
stroke, generating superoxide/peroxynitrite, which depletes the 
vasculo-protective NO/NO2− pool and impairs microvascular 
perfusion (Endres et al., 2004; Garry et al., 2015); 2) Adequate 
rheo-erythrocrine function, permitting reversible deformation 
of RBCs and their passage through microvessels under various 
shear stresses to oxygenate the tissue (Özüyaman et al., 2008; 
Cortese-Krott and Kelm, 2014). More than 50% of RBCs 
undergo severe morphological changes within 48 hrs after 
stroke in humans, likely contributing to poor deformability, 
impaired microcirculation, and resistance of clots to lysis 
(Swanepoel and Pretorius, 2012; Pretorius and Lipinski, 2013; 
Van Der Spuy and Pretorius, 2013).                    

RBC dysfunction in human stroke
We conducted a pilot study measuring RBC deformability by 
ektacytometry in patients with ischemic stroke and measured 
Elongation index (EI) at 24 hrs, 48 hrs, and 90 days. Using a 
two-sample t-test, we compared the EI at 24 hrs (mean ± SD) 
in stroke patients (N = 20, 0.29 ± 0.08) to control patients (n = 
7 0.36 ± 0.01) and found that stroke patients had significantly 
lower EI (p = 0.0015) at 24 hrs. Using a mixed model we 
examined whether the change over time in EI among stroke 
patients was different due to race, sex, diabetes, tobacco use, 
tPA, ET, and hypertension. Hypertension was the only factor 
showing a significant interaction over time (p = 0.0688). 
Controlling for age, race, sex, diabetes, tobacco, tPA, and ET the 
change in EI over time [24 hrs (n = 18), 48 hrs (n = 16), 90 days 
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(n = 7)] was different by hypertension with hypertensive stroke 
patients (n = 14) showing no change in EI from 24 hrs (adjusted 
mean ± SE 0.33±0.02) to 48 hrs (0.34 ± 0.02) to 90 days (0.36 
± 0.04) (all p > 0.42), but non-hypertensive stroke patients (n 
= 4) saw an increase in EI from 24 hrs (0.20 ± 0.04) to 90 days 
(0.34 ± 0.05, p = 0.0033) and 48 hrs (0.20 ± 0.05) to 90 days 
(p = 0.0043), but no change from 24 hrs to 48 hrs (p = 0.9810). 
There was a strong trend for EI to rise over time returning 
near the EI of control subjects at 90 days suggesting that the 
stroke itself may cause the decrease in deformability and rheo-
erythrocine dysfunction. These data suggest that human stroke 
is associated with a decrease in RBC deformability. 

Intracerebral hemorrhage (ICH
Because of its ease of use, RIC is an ideal prehospital 
intervention that can be started in the ambulance or helicopter. 
However, any prehospital drug needs to be safe in patients 
with ICH. A concern raised by the FDA in submission for an 
Investigational New Device (IND) for RIC in acute stroke was 
the risk of exacerbation of ICH as RIC increases CBF. Geng and 
colleagues (2012) showed that RIC did not exacerbate ICH in a 
collagenase rat model when administered one time acutely.  We 
undertook a study of RIC in a murine ICH model (Vaibhav et 
al., 2018). RIC started at 2 hrs post ICH and continued daily for 
five days reduced hematoma volume at five days and improved 
functional outcome. RIC was effective in both a collagenase 
and direct blood injection model in mice. Experiments with 
parabiotic pairs demonstrated the effect of RIC was humoral 
and mediated by circulating monocytes/macrophages. RIC 
treatment induced an increase in the ratio of anti-inflammatory/
pro-inflammatory macrophages and was dependent upon AMP-
activated protein kinas α1 activation in myeloid cells. Bone 
marrow chimera transplantation experiments showed that the 
RIC effect on hematoma clearance was dependent on bone 
marrow derived CD36. These studies demonstrate that RIC is 
also effective in a murine ICH model (if continued for 5 days 
post ICH) and supports the testing of RIC in the prehospital 
setting for stroke and as a treatment for ICH.

RIC trials in ischemic stroke and ICH
There have been a number of small clinical trials of RIC in 
acute ischemic stroke. The Remote Ischemic Conditioning After 

Stroke Trial (RECAST) (NCT 86672015) was a randomized 
blinded trial of 26 subjects with acute stroke treated within 24 
hrs with RIC (England et al., 2017).  Thirteen subjects were 
randomized to RIC and 13 to sham (4 cycles of 5 minutes) 
within a mean of 15.8 hrs post onset of stroke. RIC was well 
tolerated, safe and feasible. Subjects treated with RIC had 
significantly lower National Institute of Health stroke scale 
(NIHSS) scores at 90 days suggesting RIC improved long term 
outcome. 
     The Remote Ischemic Conditioning Paired with Endovascular 
Treatment Acute Ischemic Stroke (REVISE-1) trial was a 
single-arm, open-label, safety, and feasibility trial of RIC in 
20 subjects with acute stroke undergoing ET (NCT03210051). 
There were no serious adverse events related to RIC. RIC was 
safe, well tolerated, and feasible when used on combination 
with ET (Zhao et al., 2018).
     The Remote Ischemic Conditioning in Acute Brain Infarction 
(RESCUE BRAIN) trial (Pico et al., 2020) was a multicenter, 
randomized open-label, blinded endpoint trial (PROBE design). 
In this in-hospital trial, 188 subjects were randomized to RIC 
(n = 93) or usual care (n = 95). RIC was administered once 
with a thigh cuff within 6 hrs (mean 3 hrs 42 minutes). The 
primary outcome was growth in brain infarct size at 24 hrs. No 
significant difference was seen in infarct growth at 24 hrs but 
excellent outcome (modified Rankin scale 0,1) at 90 days was 
improved non-significantly in the RIC group (51% to 41%, p 
= 0.11). Most of the patients were treated with tPA  (87%) and 
34% underwent mechanical thrombectomy.
     In the Remote Ischemic Conditioning for Intracerebral 
Hemorrhage (RICH) trial (NCT03930940) (Zhao et al., 2021), 
40 subjects with ICH were randomized to RIC within 24-48 hrs 
of onset and treated daily for 7 days or usual care. There was 
no significant difference in hematoma volume at 7 days but the 
perihematomal resolution rate was higher in the RIC group. 
There was no difference in favorable functional outcomes at 90 
days.

Prehospital clinical trials of RIC in stroke
Prehospital trials allow patients to receive the intervention 
earlier than in-hospital trials. One of the problems in stroke 
clinical trials is late administration of agents and interventions. 
A group led by Grethe Andersen and colleagues (Hougaard 

Figure 1. 1) RIC (arm) in the ambulance.  2) Shear stress increases RBC or eryNOS3 and improves deformability. 3) Increase in eryNOS3 “rescues” 
endothelial NOS3  and improved RBC deformability improves collateral flow. 4) Biomarker analysis in blood samples drawn pre and post RIC
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et al., 2014) in Aarhus Denmark completed a randomized 
clinical trial of RIC in acute stroke patients in the prehospital 
setting. The primary endpoint was penumbral salvage defined 
as perfusion-diffusion mismatch not progressing to infarction 
after 1 month. While there was no difference between the 
RIC and control group in the primary outcome and there 
was no difference in 3-month functional outcome, there was 
suggestive evidence that RIC showed “activity”.  Transient 
ischemic attack was more frequent in patients who received 
RIC than in patients who did not (42 of 247 versus 16 of 196, 
p = 0.006), and patients who received RIC had lower baseline 
NIHSS scores than patients who did not (median 4 versus 5, P = 
0.016). MRI data showed no significant effect of RIC between 
the intervention and control group on penumbral salvage, 
final infarct size, or infarct growth. However, after adjustment 
for baseline perfusion and diffusion lesion severity, voxel-
wise logistic analysis showed that RIC reduced tissue risk of 
infarction (p = 0.0003).  RIC was safe and well tolerated in the 
prehospital setting.
     A number of methodological and operational issues impacted 
the trial. First, the trial enrolled a mild stroke population with a 
baseline mean hospital NIHSS of 5. Second, many subjects did 
not receive the full dose of RIC. Since RIC was discontinued 
when the patients arrived at the emergency department, only 
41% of the subjects received the full RIC dose of 4 cycles. 
Lessons learned include the need to include a prehospital 
severity scale and to use an automated RIC device so that the 
RIC can be continued once the patient arrives at the emergency 
department for the full dose. 
     This experience led to the design of Denmark Remote 
Ischemic Conditioning in Patients with Acute Stroke 
(RESIST) Trial (Blauenfeldt et al., 2020). The RESIST 
trial (NCT03481777) in Aarhus, Denmark is a 1500 subject 
multicenter, randomized, sham-controlled of an automated RIC 
device in acute stroke in the prehospital setting (Blauenfeldt 
et al., 2020). Aarhus, Denmark is an ideal environment for 
prehospital stroke trials. One of the earliest prehospital RIC 
trials in ST-segment elevated myocardial infarction was 
conducted in Aarhus (Botker et al., 2010). Our group at the 
Medical College of Georgia has collaborated with Grethe 

Andersen’s group in Aarhus on an NIH funded biomarker study 
(R01NS112511) to examine the effects of stroke and RIC on 
rheo-erythrocrine markers including RBC deformability, RBC 
nitric oxide, and plasma nitrite. In this trial, RIC or sham RIC 
is started in the ambulance and repeated at 6 hrs and then twice 
per day for 7 days so that per- and postconditioning will be 
tested. Subjects will have blood drawn at three different time 
points (Figure 1) prior to RIC/sham RIC treatment, upon arrival 
at the hospital, and again at 24 hrs (Figure 2).  Most RIC trials 
have tested only one RIC treatment acutely. About 10% of the 
subjects will have ICH so this is an opportunity to test whether 
RIC reduces hematoma size and improves outcome in ICH 
patients. ICH patients will have follow up CT scans at 24 hrs 
and 7 days, and functional outcome measured at 90 days.
     This well designed and powered randomized clinical trial is 
meeting its recruitment targets and will answer the question of 
whether per-and postconditioning with RIC is effective in acute 
stroke. We will also be able to address the question of whether 
rheo-erythrocrine biomarkers predict outcome in acute stroke 
and response to RIC.
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